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Abstract—A second order microstructure theory for the dynamic behaviour of elastic laminates is applied to
the problem of a laminated half space, with interfaces normal to the boundary, subjected to harmonically time
varying dispiacement and stress distributions at the boundary. The finite number of modes of the
microstructure theory is found to be sufficient to model a uniform normal displacement boundary condition
but not a uniform normal stress boundary condition. The solutions yield the constituent displacement and
stress distributions both near the boundary and in the far field and permit an assessment of the usefulness of
the microstructure theory for such boundary value problems.

1. INTRODUCTION

In recent years, continuum theories with microstructure for the analysis of dynamic processes in
composite materials have been developed, first by Sun, Herrmann and Achenbach{1-3] and more
recently by Hegemier, Gurtman and Nayfeh[4], in which the individual deformational
behaviours of the composite constituents appear explicitly. These theories have shown
impressive success in predicting the dispersion of steady state plane waves[1-13] and
determining the transient material response near the wave front for comparison with impact
experiments[4, 10-13].

Using a second order formulationi of the Sun, Herrmann and Achenbach theory for
application to elastic laminates[14], the authors in [15] presented a comparison of the
displacement and stress distributions associated with the steady state wave propagation modes
with the corresponding distributions obtained using the theory of elasticity for plane waves
propagating normal to, parallel to, and at an angle to the laminate interfaces. It was found that
gver a significant range of frequency the stress and displacement distributions of the second
order theory closely matched the distributions predicted by the theory of elasticity.

In this paper, the second order theory is applied to the problem of a laminated half space, with
layer interfaces normal to the boundary, which is subjected to harmonically time varying
displacement and stress distributions at the boundary. The study of this problem is motivated by
several questions of research interest. First, is the finite modal content of the microstructure
theory sufficient for modeling typical boundary conditions met in practice? If so, what stress and
displacement distributions result, both near the boundary and in the far field, and how do they
vary with frequency? Further, solutions of this type are of practical importance to those involved
with engineering applications of composite materials. Finally, they are of research interest as an
example of the application of a theory with microstructure.

The theory used in this paper is a member of the family comprised of coupled stress theories,
multipolar theories and micromorphic material theories developed by Mindlin[16], Green,
Naghdi and Rivlin[17] and Eringen and Suhubi[18], respectively. Heterogeneous materials,
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+The order is here taken to mean the number of terms retained in addition to the zero-order term in the expansion of the
layer displacement vectors in terms of distance normal to the layer.
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particularly laminates, constitute the simplest test case for such theories. Thus the present work
clarifies and further demonstrates the applicability of a microstructural theory to a class of real
materials.

2. FORMULATION

The development will rely closely on the presentation of the second order theory in [14, 15]
and will use the same notation. The geometry considered is a half space of an elastic bilaminate
with layer interfaces normal to the half space boundary as shown in Fig. 1. The bilaminate
consists of alternating layers of a matrix material, with Lamé constants A, .., density p. and
layer thickness d., and a reinforcing material, with Lamé constants A;, u, density p; and layer
thickness d,.

The problem considered is the response of the half space to two boundary conditions, a
uniform, harmonically time varying, normal displacement boundary condition, and a uniformly
distributed, harmonically time varying, normal stress boundary condition. These conditions give
rise to waves propagating in the x, direction which are symmetric about the layer centerlines.

The second order theory of [14, 15] involves writing the displacement vector components of
the kth reinforcing layer u/* as the expansion

ul = ubi+ xS Pl +% Gxs" - di)dr, O

where x;’ is the x, distance from the layer center line. In the development of the theory, the
discrete layer variables usl, ¢, ®/ are approximated by continuous variables u,, ¢/, ®/ which,
together with corresponding variables ug, 7, ®™ for the matrix material, are the
microstructural variables of the theory.

For symmetric waves propagating parallel to the layers, symmetry reduces the expansion
equation (1) to

W = ufi+ % Gx - dHD,* @

usz = xzfllfzﬂ‘, (3)
so that the problem has six microstructural variables: uf;, u%, ¥/, ¢.", ®//, ®™. The plane strain

equations of motion for this case appear as equations (26-35) of [14]. Substituting steady state
wave solutions

u{)l = ﬁonei(wt —kx,) (4)

X

Fig. 1. Laminated half space.
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ug = aqe' (wt — kx,) ®

¥ = gl (ot - kx)) (6)

where t is time, o is frequency and k is wave number, into equations (26-35) of [14] yields a set
of homogeneous equations. The vanishing of the determinant of the coefficients of these
equations determines k for a given w, and the null vector of the equations yields the modal
components &5, #a; ... corresponding to the jth root k;. Substituting the modal component
back into the expansion, equations (2) and (3), then determines the displacement distributions for
that mode and from them the stress distributions can be obtained.

This determination of the modal displacement and stress distributions was carried out for the
lowest modes in [14] and [15]. In this paper, the objective is to superimpose the second-order
modal distributions to attempt to match specified boundary conditions at the half space
boundary.

a. Displacement boundary condition
For the uniform displacement boundary condition case, the exact boundary condition at
xi=0is

u™ = u™ = De", 7

where D is a constant. No condition is placed on the x, components u,* and u,™ or on the shear
stress at the boundary. In terms of the modal distributions

ﬂ{! = ft{ny“‘% (3XZI2 - dfz)é{j (8)
an = ao,,+% O™ - 4,93, ©)

the boundary conditions at x; = 0 can be written approximately as

> gitl;=D a10)
3

quﬁ'f}ﬁD (11

where ¢ are constants chosen to satisfy the boundary conditions, equations (10) and (11), as
closely as possible in some sense. In this work a simple least squares criterion has been chosen,
minimizing the integral

d!/2
I(q) =I X (2 q;lz{y“‘ D) (Z q,ﬁ{;— D)* dx,’

—(dy /2

+ f " (3 an- D) (2 il - D)* de." (12)

—{dm i) i

where the superscript * denotes the complex conjugate. The minimization, with equations (8) and
(9), yields a set of linear equations for the g;

S ag’ = b (13)
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where

b = (d,aa,k—g 8B+ duifl— d,:‘;';) D (14)

and

iy = daihud@hy)* "% dLad (@) + ®f(ihi)*]

49

20 A’ DTUDT)*. (15)

320 d;sCD’k(CD’) + dnlioudfioy)* —% A [AG®T)* + OS] + =5

Once the g; are determined, the solutions are obtained by summing the modal components.

u{n = 2 q]a{)lj (16)

usi =3 qd, 7)
H

b. Stress boundary condition
The strain components in the kth reinforcing layer are obtained from equations (2) and (3)
using the usual strain-displacement relations

au™  oul 2 afb
en=Tl B en-ap B (8)
fi
e§§=%‘§2—=¢2”‘ (19)
1fauw™ o™ 1 aw">
~_ 1 2 \_ (3, 1@ % 4 192
ek 2(ax2+ axl) 2(3x2<1)1 +xf 2, (20)

The corresponding stress components are then obtained from the usual linear isotropic relation
th = Adyelmm + 2usel. 21)

By using equations (18-20) and the solutions (4) ... in (21), the modal normal stress component
F {1 i is

Fly= =ik O + 20 [ 8oy 5 0= 480 | + A @)

with a corresponding equation for the matrix material.
For a uniformly distributed normal stress distribution, the boundary conditions in terms of
superimposed modal distributions are

2 q,'t_{lj:—"' T (23)
2. gty=T 24

where T is the constant amplitude of the time-harmonic stress at x, = 0. Again no conditions are
placed on the tangential displacements or shear stresses at the boundary.
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Minimizing the integral

4,2

Ig)= (Z ‘bt—{lj" T) (2 q;t_{u— T)* dx:l

~{dy/2)

d,/2 _ _

¥ [“(dm/z) ( 7 Ul T) (2 Cath T)* dx: @5
then yields a linear equation for the g; in terms of the modal components as in the displacement
case.

3. RESULTS

The characteristic equation of the second order theory for plane-strain symmetric waves
propagating parallel to the layers was found to have three roots k; for a given o, yielding a total of
three modes of propagation. One root (referred to hereafter as mode 1) is real for all values of w.
A second one (mode 2) is imaginary until a particular cut-off frequency is reached, after which it
is real. The third (mode 3) is complex for the range of frequencies examined.

In Fig. 2, the real and imaginary parts of k; are plotted vs frequency for the three modes.}
Mode 1 propagates without attenuation for all @. Mode 2 is a standing wave below the cut-off
frequency; above it, it propagates without attenuation. Mode 3 propagates but is attenuated for
all w. In Fig, 3, the phase velocity w/Real (k) is plotted vs frequency for the three modes.

In Fig. 4, the u,' and u,™ displacement distributions (normalized to one at the matrix material
centerline) are shown for the three modes at w = 6 Mrad/s (0-955 MHz). The corresponding
values of k are 0-639, —4-53i and 1-06-5-38i I/mm, respectively.

The three lowest modes (in terms of the smallest absolute value of k;) obtained using the
theory of elasticity for the same frequency have k; values of 0-639, —5-78i and 2-28-4-11i. The u,
and u,™ distributions for these three modes are shown in Fig. 5. Although the mode 1
distributions of the two theories are identical, the mode 2 and 3 distributions are qualitatively
different for the second order microstructure theory compared to the theory of elasticity. The
two theories are different, and there is no reason to expect that they would invariably produce the
same mode shapes. Still, as will be demonstrated by the resuits, it is an interesting revelation that
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Fig. 2. Modal dispersion curves.

{Results have been computed with the material properties used in [15]: for the reinforcing material, A, = 50 GPs,
ity =3333GPa, p, = | Mg/m’®, d; = 1 mm; for the matrix material, A, =0-7777 GPa, p., = 03333 GPa, p,, =0-3333 Mg/m’,
d. =0:25 mm. In terms of the notation introduced in [1], these parameters correspond to ¥ = g/, = 100, 8 = p,Jp.. =3,
ﬂl;d;{((d’: + d,..)= 0'81 V= }‘lfz(A] + “f) 20'3’ Vm = '\mfz(’\m + Pﬂm) =0'359 E = kd! = ki and ﬁ = (')]Rea] (k)/\/(“m;pm) =
w/Re: ).
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the boundary conditions are accurately modeled by the microstructure theory even though the
mode shapes are dissimilar.

The solution for the uniform displacement boundary condition case was obtained using a unit
amplitude displacement at the boundary (D = 1 mm). When the ¢, were determined and the
solutions determined by summing the modal distributions, it was found that the solution exactly
matched the boundary condition: u.”=u," =D. In Fig. 6, the propagated displacement
distributions (far from the boundary) are shown for @ =1, 7, 13 and 20 Mrad/s (0-159, 1-11, 2-07
and 3-18 MHz). At w =1 and 7 Mrad/s, only mode 1 propagates without attenuation. Above the
cut-off frequency (w = 12-8Mrad/s, 2:04 MHz), both modes 1 and 2 propagate without
attenuation. The propagated displacement distributions are seen to differ markedly from the
uniform boundary distribution. If Fig. 7, the average propagated displacement in each material is
shown vs frequency for this case. Here it is clearly seen that the cut-off frequency is a resonant
condition at which the displacement in the matrix material becomes large compared to the
boundary displacement while the reinforcing material displacement decreases.

In Fig. 8, the normal stress distributions at the boundary are shown for various frequencies
for the displacement boundary condition, and in Fig. 9, the corresponding propagated
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distributions are shown. An essential point is that the propagated stresses can be substantially
larger than the stresses at the boundary. In Fig. 10, the propagated interface shear stress between
the layers, normalized by the average normal stress at the boundary, is plotted vs frequency for
this case. Again the cut-off frequency is seen to be a critical point where the interface shear stress
becomes of the same order as the normal stress at the boundary.

Finally, in Fig. 11 the energy distribution among the modes in the propagated wave is shown
vs frequency. Below the cut-off frequency, only mode 1 propagates. Above the cut-off, the
energy is approximately equally divided between modes 1 and 2, with mode 2 carrying
progressively more of the energy as frequency increases.

Next, the ¢ were determined for the case of a unit amplitude stress at the boundary
(T = 1Pa). In this case, it was found that the modal content of the microstructure theory was not
sufficient to approximate a uniform stress distribution at the boundary. The actual normal stress
distribution at the boundary obtained is shown in Fig. 12. Although the stress distribution in the
matrix material is non-uniform, the average stress in each layer is approximately one.

In Fig. 13 the propagated normal stress distributions are shown for this case. Note that the
propagated stresses are substantially larger than the stresses imposed at the boundary. In Fig. 14,
the average propagated normal stress in each material is shown vs frequency for this case. Note
the large reinforcing material stress at frequencies below the cut-off. Above the cut-off, the stress
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Fig. 11, Modal energy distribution.

NORMALIZED STRESS ARPLITUDE

Fig. 12. Boundary stress distribution.



850 A. BEDFORD and D. S. DRUMHELLER

approaches one in both materials. In Fig. 15 the propagated interface shear stress is shown vs
frequency. At the cut-off, it is over three times the imposed boundary stress.

In Fig. 16 the energy distribution among the modes is shown vs frequency for this case. At the
cut-off frequency, the energy abruptly changes from mode 1 to mode 2, then rapidly goes
predominantly back to mode 1 above the cut-off frequency.

4, SUMMARY AND CONCLUSIONS

A second order microstructure theory has been applied to a laminated half space subjected to
harmonic uniform displacement and uniform stress boundary conditions. The finite number of
modes in the theory was found sufficient to solve the uniform displacement case, and the
resulting propagated stress and displacement distributions were shown.

On the other hand, it was found that a uniform stress boundary condition could not be
achieved, although the average normal stress in each constituent was equal to the imposed
boundary stress.

A very significant finding was that propagated stress levels can exceed by several times the
stresses applied at the boundary.
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Fig. 16. Modal energy distribution.

Boundary conditions on the displacements parallel to the boundary and the shear stresses at
the boundary were not imposed in obtaining the results presented. Since the average
displacement parallel to the boundary and the average shear stress at the boundary in each layer
vanish for the type of waves considered, the effect on the propagated results should be slight.
However, when an attempt was made to include shear stress boundary conditions in the stress
case, the result was a degradation of the achieved normal stress distribution. As a result of this,
and the fact that even without the shear stress conditions a uniform stress boundary condition
could not be achieved, it is clear that, except for a very restricted class of boundary conditions,
obtaining accurate stress and displacement solutions near the boundary in inhomogeneous
materials will require a theory of higher order than the one we have considered.
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